3.8 \(\int \frac {a+b \csc ^{-1}(c x)}{x} \, dx\)

Optimal. Leaf size=64 \[ \frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b}-\log \left (1-e^{2 i \csc ^{-1}(c x)}\right ) \left (a+b \csc ^{-1}(c x)\right )+\frac {1}{2} i b \text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right ) \]

[Out]

1/2*I*(a+b*arccsc(c*x))^2/b-(a+b*arccsc(c*x))*ln(1-(I/c/x+(1-1/c^2/x^2)^(1/2))^2)+1/2*I*b*polylog(2,(I/c/x+(1-
1/c^2/x^2)^(1/2))^2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5219, 4625, 3717, 2190, 2279, 2391} \[ \frac {1}{2} i b \text {PolyLog}\left (2,e^{2 i \csc ^{-1}(c x)}\right )+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b}-\log \left (1-e^{2 i \csc ^{-1}(c x)}\right ) \left (a+b \csc ^{-1}(c x)\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsc[c*x])/x,x]

[Out]

((I/2)*(a + b*ArcCsc[c*x])^2)/b - (a + b*ArcCsc[c*x])*Log[1 - E^((2*I)*ArcCsc[c*x])] + (I/2)*b*PolyLog[2, E^((
2*I)*ArcCsc[c*x])]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3717

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*
(m + 1)), x] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*k*Pi)*E^(2*I*(e + f*x)))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4625

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tan[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 5219

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> -Subst[Int[(a + b*ArcSin[x/c])/x, x], x, 1/x] /; Fre
eQ[{a, b, c}, x]

Rubi steps

\begin {align*} \int \frac {a+b \csc ^{-1}(c x)}{x} \, dx &=-\operatorname {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{x} \, dx,x,\frac {1}{x}\right )\\ &=-\operatorname {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\csc ^{-1}(c x)\right )\\ &=\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b}+2 i \operatorname {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\csc ^{-1}(c x)\right )\\ &=\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b}-\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )+b \operatorname {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\csc ^{-1}(c x)\right )\\ &=\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b}-\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )-\frac {1}{2} (i b) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \csc ^{-1}(c x)}\right )\\ &=\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b}-\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right )+\frac {1}{2} i b \text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 53, normalized size = 0.83 \[ a \log (x)+\frac {1}{2} i b \left (\csc ^{-1}(c x)^2+\text {Li}_2\left (e^{2 i \csc ^{-1}(c x)}\right )\right )-b \csc ^{-1}(c x) \log \left (1-e^{2 i \csc ^{-1}(c x)}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCsc[c*x])/x,x]

[Out]

-(b*ArcCsc[c*x]*Log[1 - E^((2*I)*ArcCsc[c*x])]) + a*Log[x] + (I/2)*b*(ArcCsc[c*x]^2 + PolyLog[2, E^((2*I)*ArcC
sc[c*x])])

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arccsc}\left (c x\right ) + a}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/x,x, algorithm="fricas")

[Out]

integral((b*arccsc(c*x) + a)/x, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/x,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(x)]Undef/Un
signed Inf encountered in limitLimit: Max order reached or unable to make series expansion Error: Bad Argument
 Value

________________________________________________________________________________________

maple [A]  time = 0.18, size = 140, normalized size = 2.19 \[ a \ln \left (c x \right )+\frac {i b \mathrm {arccsc}\left (c x \right )^{2}}{2}-b \,\mathrm {arccsc}\left (c x \right ) \ln \left (1+\frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )-b \,\mathrm {arccsc}\left (c x \right ) \ln \left (1-\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )+i b \polylog \left (2, -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}\right )+i b \polylog \left (2, \frac {i}{c x}+\sqrt {1-\frac {1}{c^{2} x^{2}}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsc(c*x))/x,x)

[Out]

a*ln(c*x)+1/2*I*b*arccsc(c*x)^2-b*arccsc(c*x)*ln(1+I/c/x+(1-1/c^2/x^2)^(1/2))-b*arccsc(c*x)*ln(1-I/c/x-(1-1/c^
2/x^2)^(1/2))+I*b*polylog(2,-I/c/x-(1-1/c^2/x^2)^(1/2))+I*b*polylog(2,I/c/x+(1-1/c^2/x^2)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ {\left (c^{2} \int \frac {\sqrt {c x + 1} \sqrt {c x - 1} \log \relax (x)}{c^{4} x^{3} - c^{2} x}\,{d x} + \arctan \left (1, \sqrt {c x + 1} \sqrt {c x - 1}\right ) \log \relax (x)\right )} b + a \log \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/x,x, algorithm="maxima")

[Out]

(c^2*integrate(sqrt(c*x + 1)*sqrt(c*x - 1)*log(x)/(c^4*x^3 - c^2*x), x) + arctan2(1, sqrt(c*x + 1)*sqrt(c*x -
1))*log(x))*b + a*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.76, size = 65, normalized size = 1.02 \[ \frac {b\,\mathrm {polylog}\left (2,{\mathrm {e}}^{\mathrm {asin}\left (\frac {1}{c\,x}\right )\,2{}\mathrm {i}}\right )\,1{}\mathrm {i}}{2}+\frac {b\,{\mathrm {asin}\left (\frac {1}{c\,x}\right )}^2\,1{}\mathrm {i}}{2}+a\,\ln \relax (x)-b\,\ln \left (1-{\mathrm {e}}^{\mathrm {asin}\left (\frac {1}{c\,x}\right )\,2{}\mathrm {i}}\right )\,\mathrm {asin}\left (\frac {1}{c\,x}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(1/(c*x)))/x,x)

[Out]

(b*polylog(2, exp(asin(1/(c*x))*2i))*1i)/2 + (b*asin(1/(c*x))^2*1i)/2 + a*log(x) - b*log(1 - exp(asin(1/(c*x))
*2i))*asin(1/(c*x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acsc}{\left (c x \right )}}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsc(c*x))/x,x)

[Out]

Integral((a + b*acsc(c*x))/x, x)

________________________________________________________________________________________